Asymptotic Independence in the Multivariate Central Limit Theorem

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Central Limit Theorem in Multitype Branching Random Walk

A discrete time multitype (p-type) branching random walk on the real line R is considered. The positions of the j-type individuals in the n-th generation form a point process. The asymptotic behavior of these point processes, when the generation size tends to infinity, is studied. The central limit theorem is proved.

متن کامل

MULTIVARIATE GENERALIZATIONS OF THE q–CENTRAL LIMIT THEOREM

We study multivariate generalizations of the q-central limit theorem, a generalization of the classical central limit theorem consistent with nonextensive statistical mechanics. Two types of generalizations are addressed, more precisely the direct and sequential q-central limit theorems are proved. Their relevance to the asymptotic scale invariance of some specially correlated systems is studie...

متن کامل

A Multivariate Central Limit Theorem for Continuous Local Martingales

A theorem on the weak convergence of a properly normalized multivariate continuous local martingale is proved. The time-change theorem used for this purpose allows for short and transparent arguments. 1991 Mathematics Subject Classification: 60F05, 60G44

متن کامل

The Martingale Central Limit Theorem

One of the most useful generalizations of the central limit theorem is the martingale central limit theorem of Paul Lévy. Lévy was in part inspired by Lindeberg’s treatment of the central limit theorem for sums of independent – but not necessarily identically distributed – random variables. Lindeberg formulated what, in retrospect, is the right hypothesis, now known as the Lindeberg condition,1...

متن کامل

The Lindeberg central limit theorem

Theorem 1. If μ ∈P(R) has finite kth moment, k ≥ 0, then, writing φ = μ̃: 1. φ ∈ C(R). 2. φ(v) = (i) ∫ R x edμ(x). 3. φ is uniformly continuous. 4. |φ(v)| ≤ ∫ R |x| dμ(x). 1Charalambos D. Aliprantis and Kim C. Border, Infinite Dimensional Analysis: A Hitchhiker’s Guide, third ed., p. 515, Theorem 15.15; http://individual.utoronto.ca/ jordanbell/notes/narrow.pdf 2Onno van Gaans, Probability measu...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: The Annals of Probability

سال: 1979

ISSN: 0091-1798

DOI: 10.1214/aop/1176994989